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Abstract

The issue how o create profit in a network especially in supply chains is often discussed in scientific
publications. But most of those scientific publications only analyze which structures, processes and
actions can contribute to the creation of profit. How those collectively achieved profits can be distrib-
uted in a network of autonomous actors is often disregarded. Distributive justice, or fair distribution
of collectively created profits, is one of the most important means of securing the stability of networks.
This paper therefore presents a proposal for an operationalization of the fairness term from an eco-
nomic perspective. This proposal is specific to the distribution of profits in networks of autonomously
acting corporations and to especially supply chains. It is based on an innovative cooperative game
theory approach, the y-value. A simple and comprehensible example is used 1o illustrate the calcule-

tion of the y-value.
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1 Introduction
1.1 Research gap

Inter-organizational co-operation can generally be defined as networks of autonomous
actors, in which every actor represents a legally autonomous corporation that hence is
not subject to directions. In this paper it is also implied that co-operations are based on
voluntary collaborations that are economically beneficial to each corporation involved.
Such circumstances arise, for example, in supply chains that strictly speaking are sup-
ply webs, innovation and production networks, and virtual corporations. Supply chains
as a special form of inter-organizational co-operations of legally autonomous corpora-
tions are in the focus of this paper.

The reason why corporations co-operate is to achieve special profits which cannot be
realized without co-operating. The creation of profits in networks of autonomous ac-
tors, and especially supply chains, is often disputed. Basic theoretical considerations
show that central coordination of collaboration based on the division of labor of sev-
eral actors can never yield worse, and often yield better economic results than the ag-
gregation of many partial plans that are locally “optimized” by each actor. However,
total-planning models based on such a central coordination approach fail most of the
time on account of unachievable assumptions relating to the availability of current and
detailed information.

A large number of scientific publications and practical studies are devoted to the issue
how to gain profits in supply chains or generally in co-operations. Those publications
and studies show that the mutual adjustment of the actors with regard to their action
plans as a central coordination approach normally yields higher economic values than
if the actors optimize their action plans locally and without collaboration.! At the same
time, the so-called bullwhip effect represents an important empirical indication for the
possibility of collectively achieving profits in supply chains through co-operation.?

The bullwhip effect describes in particular how corporations build inventory buffers
based on the demand of their customers: the further the corporation from the final cus-
tomer, the greater the “safety stock” in times of rising demand. The cost of capital in-
vested in oversized stock inventory buffers causes inefficiency, and thus co-operation
profits can be realized by jointly avoiding or reducing the bullwhip effect. Evidence of
the practical relevance of the bullwhip effect to supply chain management is provided
by studies of its financial consequences.’ Based on available estimates of the cost of
the bullwhip effect, corporations should be able to increase their profits — depending
on the source — by 8.4 to 20.1%* or by 10 to 30%" by avoiding it.

' cf. Li et al. (2009), pp.,88-99; Mahdavi et al. (2008), pp. 1-20; Saharidis et al. (2009), pp. 117-
126; Xiao et al. (2009), pp. 1-15; Zhang (2006), pp. 283-295.

2 ¢f Lee et al. (1997), p. 78;.see also Croson/Donohue (2006), pp. 323-336; Keller (2004), p. 11;
Krol et al. (2005), pp. 281-289; McCullen/Towill (2002), p. 164; Metters (1997), S. 89-94.

3 ¢f. McCullen/Towill (2002), p. 164; Metters (1997), pp. 93-97.
* cf McCullen/Towill (2002), p. 170.
> cf. Metters (1997), pp. 89.
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Most scientific publications on the subject of supply chain management only analyze
which structures, processes and actions can contribute to the co-operative creation of
profits. But how the distribution of profits that were collectively achieved in an inter-
organizational supply chain can influence the stability of such a supply chain is often
disregarded. For example, Sarmah, Acharya and Goyal note after an extensive over-
view of the state of the art in achieving co-operation profits by supply chain manage-
ment: “Most of these papers have ignored the mechanism to divide the surpluses gen-
erated due to coordination between the parties™. In a similar way, Crook and Combs
observe that: “Little attention has been paid to how the gains attributable to SCM are
distributed™”.

This neglect of those distribution aspects represents a significant research gap. The
formation and the drifting apart of networks generally depend on the actors accepting
the collectively gained profit as fair. If they regard the distribution of hoped for or al-
ready realized co-operation profits as fair they form a network or stay in it. If only one
or more actors of a network perceive that the co-operation profit is not distributed in a
fair way especially if his share of the profit seems to him to be too small, he would not
continue to collaborate within the network. Consequently the network would fall apart.

Distributive justice, or fair distribution of collectively created profits, is accordingly
one of the most important approaches to secure the stability of networks in political,
socio-scientific and behavior-economic publications on the subject of network theory.

1.2 Scientific Problem

This paper examines the scientific problem of how the co-operation profits can be dis-
tributed to the actors as network partners in such a way that all actors regard the distri-
bution outcome as fair. To solve this problem, scientific methods from the area of
game theory will be applied. Aspects informing the choice of methods are that the
networks or supply chains considered here consist of legally independent corporations
(autonomous actors), who each pursue their own interests and do not have to comply
with the instructions of their co-operation partners.

The relevant literature includes multiple contributions that draw on cooperative game
theory to try and answer the problem of how profits that were collectively achieved in
a network of autonomous actors can be distributed among the network partners in a
fair way. Examples include the analysis of Cachon and Zipkin, Fromen, Gjerdrum et
al., Inderfurth and Minner, Minner, Sucky, Thun as well as Vo and Schneidereit.®
These contributions cannot be referenced in detail on account of the brevity of this
article. However, they all share common ground in that they only cover the scientific
and practical problem of fairness of co-operation profit distributions superficially.

6 ¢f. Sarmah et al. (2007), p. 1470.
7 ¢f. Crook/Combs (2007), p. 546.

oo Cachon/Zipkin (1999); Fromen (2004); Gjerdrum et al. (2001); Inderfurth/Minner (2001);
Minner (2007), pp. 579-582; Sucky (2004a), pp. 189-218; Sucky (2004b), pp. 493-513.; Sucky
(2005), pp. 258-261; Thun (2005) and Vol/Schneidereit (2002).
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Usually, a solution concept from cooperative game theory is used, whose fairness or
acceptability is implied, but not closely reflected. This applies above all for the appli-
cation of the Shapley value®, the nucleolus' as well as the cooperative Nash solution."
Only Fromen discusses a wide selection of different solution concepts of cooperative
game theory."”” He examines them mostly from a mathematical and analytical perspec-
tive, but not from the pragmatic viewpoint of their acceptability as fair solution con-
cepts.”

1.3 Solution approach

In this paper an innovative approach to fair distribution outcomes is presented. This
approach rejects the idea of taking a solution concept from cooperative game theory as
a “given” and applying it to a profit distribution problem on the naive assumption that
the resulting distribution outcome will be accepted as fair. By making assumptions
regarding the rationality of the actors it instead limits gradually the space of generally
possible outcomes. If these assumptions are accepted as “reasonable”, the result is a
specific solution concept from cooperative game theory rarely found in the economic
literature, the so-called y-value. The fairness of the y-value and the associated distribu-
tion outcomes is justified by the acceptability of the gradually established assumptions
regarding the “reasonable” limitation of the valid solution space. It will be shown that
these assumptions cannot be equated with the formalistic axioms of conventional game
theory. It is not a matter of abstract, artificial mathematical characteristics, but of intui-
tively understandable and, from an economic perspective, strong assumptions to a
game theory concept designed to solve the above mentioned scientific — but also prac-
tical — problem of fair distribution of co-operation profits in networks of autonomous
actors.

2 Introduction to game theoretical solution concepts

The following four requirements are considered to be important for game theory mod-

eling of the problem of determining fair distributions of profits:

1. It must be possible to explicate the different scopes for alternative distribution out-
comes that emerge from different assumptions regarding the rationality of the ac-
tors.

2. Distribution outcomes determined by the solution concepts must be justifiable in
order for the proposed solutions to be accepted as fair distribution outcomes.

3. The solution of the distribution problem must be communicated easily in the sup-
ply chain.

4. There must be only one unique solution to the distribution problem.

®  cf. Thun (2005); Vof}/Schneidereit (2002); Shapley (1953).

1 ¢.g. Meertens/Potters (2006); Fromen 2004; Vof3/Schneidereit (2002); Schmeidler (1969).

1 e.g. Sucky (2004a), pp. 201-205.

12 ¢f. Fromen (2004), pp- 95-142.

For a detailed discussion of the current situation outlined above, see Zelewski (2009), pp. 30-34.
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The starting point for the cooperative distribution game is the generic distribution
problem of distributing a profit or, synonymously, a co-operation profit G with GeR.,
(where R is the set of all positive real numbers) among the N autonomous actors 4,
of a supply chain (with n=1,...,N, NeN and N > 2, where N is the set of all natural
numbers). In cooperative game theory, a two-step standard approach to solving this
generic distribution problem exists.

The first step is to develop a characteristic function ¢. This function refers to all possi-
ble coalitions which could be formed by the actors in the relevant supply chain. More-
over, “degenerate” coalitions formed by one actor are feasible. Therefore, a coalition
C, is a non-empty subset of the set 4 of all actors in the supply chain: &« C,, c 4
with 4 = {A1,...,4y}. For each characteristic function ¢, it is assumed with g as power
set operator that: c¢: p(4) > Ry with C, — ¢(C,) for each coalition C, and
@ — (&) = 0. Such a characteristic function assigns the amount ¢(C,,) the respective
coalition C,, can claim with good reason. In the case of the grand coalition Cy = 4, this
is the overall co-operation profit G: ¢(Co)=G. For all other coalitions C,, with
@« C, c A, these are the amounts ¢(C,,) these coalitions C,, could realize on their
own outside the grand coalition Cy and therefore in competition with the rest of the
grand coalition, i.e. the residual coalition RC,, where RC,, = Cy\ C,,

In the second step, the shape of a distribution function v where v: 4 — Ry, and
A, = v(4,) = v, for each actor 4, is determined by calculating the distribution function
values v,. Only two information sources are considered to calculate these values. The-
se are the amounts each feasible coalition C,, can claim due to the characteristic func-
tion ¢ from the first step. At the same time the applied game theory solution concept
specifies how the distribution function values v, are calculated based on the values
¢(C,,) of the characteristic function ¢ for all feasible coalitions C,, where m =0,1,..., 2"
2. When all distribution function values v, are determined, the result is a N-tuple
v = (v1,...,vy) as a solution v for the respective regarded instance of the generic distribu-
tion problem. Every solution v assigns a share v, of the co-operation profit G to each
actor A4, of the supply chain. This N-tuple v is formally equivalent to a solution point L
in the N-dimensional non-negative real number space Rs,". The solution point L is
represented as a column vector V, whose transposed representation denoted by a su-
perscript letter (7 is: V= (vy,...,vy)".

From a management point of view, this standard approach of cooperative game theory
is unsatisfactory. Its main weakness lies in the characteristic function ¢, which is as-
sumed to be known in conventional game theory analyses. This information premise is
rather unrealistic since in actual practice it is often not known for each feasible coali-
tion C,, which value ¢(C,) is reasonably appropriate for the respective coalition. A
practicable game theory solution concept should therefore make it possible to calculate
the values v, without full knowledge of the characteristic function ¢. Such a solution
concept should refer to as few coalitions as possible to calculate the values v, for all
actors 4, Minimal knowledge is thus added as a fifth requirement to be satisfied by
any solution concept for the fair distribution of profits achieved in a supply chain.
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3  Introducing the y-value
3.1 Formulation of basic assumptions

The y-value hearkens back to contributions by Bergantifios and Mass6 from 1994
Up to now, it has only been picked up on rarely'” and, in the area of economic research
at least, is still widely unknown. The y-value is a remarkable game theory solution
concept for the generic distribution problem, as the following paragraphs will show.

The basic idea of the y-value solution concept is to restrict the solution space Rs," for
the generic distribution problem by successively adding five assumptions which stem
from the real problem of distributing profits achieved co-operatively in a supply chain
among the co-operating actors. The following arguments yield to the y-value as a “rea-
sonable” solution to the generic distribution problem that is in principle acceptable as a
fair distribution outcome.

The first assumption is the condition of individual rationality. This condition assumes
that every actor in a supply chain acts rationally in the conventional sense of perfect
rationality. This means that each actor maximizes his or her individual utility. The
condition of individual rationality places a restriction on the solution space Rs,", since
it would not be rational for an actor 4, to participate in the supply chain within the
grand coalition Cj if this coalition yields a smaller utility for this actor compared to if
he or she left the coalition and realized the amount ¢({4,}) outside the supply chain.
Thus the condition of individual rationality can be formulated with the characteristic
function ¢ and the feasible solution point L within the solution space as follows:

Ve RY: L= (V1'-~V;v )T 2 (C({Al})""’c({AN}))T 4]

The second assumption is the efficiency condition. This condition requires the profit or
co-operation profit G to be distributed exactly (“efficiently”) among all actors 4, of
the grand coalition Cy = {4,...,Ay}. While it would be irrational to distribute less than
the profit G, because this would necessarily entail a loss of Pareto optimality, it is also
impossible to distribute more than the profit G. Thus the following equation will hold
true for every feasible solution L and the value ¢(Cy) of the characteristic function c:

VieRY: L=(v,.v) » X" v, =«C)=6G

' @)

A further restriction of the solution space Rso" is implied by the efficiency condition.
Hence all the solutions of the distribution problem that fulfill the assumption of effi-
ciency are solution points L on a hyper plane /A in the N-dimensional solution space
Rso". This hyper plane H is defined as the set of all solutions v = (v1,...,vy) of the dis-
tribution problem that fulfill the equation on the right hand side of the sub-junction of
formula (2).

" ¢f Bergantifios/Masso (1994); Bergantifios/Mass6 (1996); Bergantifios et al. (2000); Berganti-
flos/Mass6 (2002).

e.g. Sanchez-Soriano (2000).
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The third assumption is the rationality condition for maximum allocable shares of the
profit. This condition has the character of a condition of collective rationality, since it
mirrors the rational consideration of all N-1 actors of the so-called marginal coalition
MC, where MC, = Co\{4,} = {41,....,4,1,Aps1,....Ax} to grant actor 4, at most the share
V,ma OF the profit G, so that the profit G would decrease if actor 4, left the grand coali-
tion Co = {41,...,Ax}. This rationality condition requires the following where ¢(Cy) = G
from formula (2):

Vn=1..,N \V,v” eR,,:
Vi SV AV = €(Cy ) —¢(MC, ) = G—c(MC,)

©)
This assumption can be generalized in such a way that the profit ¢(C,,) of each coali-
tion C,, including actor 4, would decrease if actor 4, left this coalition C,,. It follows
that the maximum allocable share v,, .., of the profit G for one actor 4, is measured by
the maximum amount ¢(C,,) - ¢(C,\{4,}) that the profit ¢(C,) of each coalition C,,
including actor A, would decrease if actor 4, left this coalition C,,. For the reasons
mentioned above, the third assumption will be replaced for the y-value by the follow-

ing generalized rationality condition for maximum allocable shares v%,,,. :

Vnzl,...,N\VlvneRzo: v, <V AL

n n.max

“

v :max{ c(Cm)—c(Cm \{An}) ’ BcC,cAdn{d}cC, }
In the solution space, the point at which the maximum allocable share v%,.. of the -
profit G is assigned to each actor 4, is called the upper bound UB or ideal point for the
distribution of the profit G.

The fourth assumption is a rationality condition for minimum allocable shares of the
profit. This condition also has the character of a collective rationality condition, since
it reflects the rational consideration of all N-1 actors of the marginal coalition MC,
where MC, = Cy\{4,} to grant actor A4, at least the share v, ,;, of the profit G with
which he or she could credibly threaten to found at least one so-called outsider coali-
tion 4C,, An outsider coalition is a coalition 4C,, of former actors of the grand coali-
tion, which leaves the grand coalition C; at least hypothetically and has the actor 4, as
“leader”. Since the same actor 4, can lead several outsider coalitions, the second index
q is used to differentiate all outsider coalitions led by the same actor 4,,.

For the y-value, it is important which outsider coalitions AC,, enable an actor 4, to
threaten in a believable manner. In this paper, it is assumed that the characteristic func-
tion is partially known due to the amounts ¢(4C,,) for each outsider coalition led by
an actor 4,,. The actor 4, offers all other actors of the outsider coalition 4C,, an opti-
mal incentive to defect. This incentive consists of so-called side payments and ensures
that the utility of each other actor from the outsider coalition AC,,is the same as his or
her maximum utility as part of the grand coalition C;. In this case, the actors in an out-
sider coalition have no incentive to remain in the grand coalition C,. The operationali-
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zation of the side payments takes place in the following way, with the amount
c({4,}|4C,,) realizable by actor 4, in the outsider coalition AC, , and with the index
set IN,, of indices of all actors belonging to this outsider coalition:

V@ cac,, c4:{4,}c4C,, — .
( ‘A "q)—c(AC"ﬁ/) Zme(m,,\{,,;)V:.m (5)

The amounts ¢({4, }|AC,,) utilized by actor 4, in threatening to found an outsider co-
alition may be negative. There are two reasons for this. Firstly, the sum Z,,,s(l,v,,_q\;,;;,}vff

of the side payments can be greater than the amount ¢(4C, ) realized by the outsider
coalition AC, . In this case, the leading actor 4, must withdraw the partial amount

Z,,,E(W_“/\{,,,)Vf ma -c(AC, ) from savings or even incur debt. Secondly, if actor 4, is the

sole actor in the outsider coalition AC,, and thus the above mentioned side payments
are not required, the amount ¢({4, }) may be negative as well. Actor 4,, for example,
may not be competitive in the market without collaborating in the co-operation, for
example, in a supply chain. In both cases, where c({4, }|4C,,) <0, a threat would not
be believable. Thus both cases are excluded from the rationality condition for mini-
mum allocable shares of the profit. The complete rationality condition for minimum
shares v/ of the profit G to be allocated is as follows:

n.min
Vn=1,.. N\Vlv eRy v, 2vr 0 A Ve =max{c, ;c,,;0}

n.min n.min

where:

e =e({4}14C,,)=e({4}) for 4c,, ={4,}
(©)

({ } | AC, q) (AC” li) Zme([N,, . \{n})v'y;'-mm‘

Bz AC <A A {41}CACM

ng =

c,, =max

n.

As a side effect of this formulation of the rationality condition for minimum allocable
shares of the profit, the condition of individual rationality according to formula (1) is
implicitly covered as a borderline case of outsider coalitions AC,, only including one
actor 4, because of term ¢, in formula (6). Hence the condition of individual rational-
ity does not in principle need to be listed explicitly as an assumption according to for-
mula (1). In this article, however, it will be used to show that the condition of individ-
ual rationality is always respected.

The lower bound LB for the distribution of the profit G is that point in the solution
space R.o" at which the miinimum allocable share Vimin OF the profit G is assigned to
each actor A,. The lower bound v, is often called the threat point.

The fifth and last assumption is introduced as an integrity condition for the relation of
the lower bound LB to the upper bound UB for the shares of the profit G to be distrib-
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uted, as well as for the hyper plane H for compliance with the efficiency condition, in
order to avoid certain complications outside the scope of this paper (for details of these
complications due to the closely related z-value see Zelewski, 2009, pp. 137-141 and

156-167):
VIB,UBeR' N GeR_,

X

vl .min vl. max
LB=| .. | A UB=| .. | rc(G)=G
x %
VN .min N.max

N ¥ N % .
o (X £ G < X Ve A LB<UB)

3.2 The solution point of the y-value

It can be shown that exactly one solution point L in the N-dimensional non-negative
real number space Rs," fulfills all five aforementioned assumptions for the generic
distribution problem concerning individual and collective rationality, as well as effi-
ciency and integrity, i.e. the formulas (1), (2), (4), (5), and (7). This unique solution
point is the y-value. The y-value is a special solution point L,, which is determined by
a convex or, in less precise but more intuitive terms, linear combination of the upper
bound (ideal point) UB and the lower bound (threat point) LB with the weighting fac-
tor y and 0 < y< 1. Therefore it must hold true that:

ViL,1B,UBeRY YV GeR,,

R Ve z
‘{l vl.min vl,mux

L=| .. /\ZszG/\LBz A UB=

n=1 7 5
A" .min vm" max (8\

- (HLXeRQ'OHyeRZO: L =y+LB+(1-7):UB A OSys1)

After some simple transformations using the efficiency condition and with special re-
N

gard to the frequently neglected degenerated case Zn Vimas = Zﬂzl Vs win » the common

formula for calculating the y-value produces:

Vn=1,.,N: v* :y-vnmm+(l—y)-v,f_mux 9)

where:

G->" : :
=1 n min . Ny N oy
7/ = N P N Y H 1f anl vn.mm‘ * anl vn.min
Zn:l vr;.ma\‘ - Zn:] vﬂ.min

E[O,l], if Zn 1 Vi mas :Zn ]v:lfmm (10)
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3.3 The y-value in comparison to the r-value

As before mentioned the in this paper introduced y-value is closely related tq the
slightly more known z-value. The r-value was proposed for the first time by Tijs in
1980 as part of the “Seminar on game theory and mathematical economics

”16' It was
further developed by Tijs and Driessen."”

The y-value can be seen as a generalization of the z-value, because the y-value hag the
same structure as the z-value, and only one central assumption of the z-value is re.
placed by a generalized assumption. In this context, the same structure means that the
x-value and the z-value are so-called compromise solution concepts. They can be
characterized by the solution for an instance of the generic distribution problem tha ig
determined as a compromise value that mediates between an upper bound for maxj.
mum allocable shares of the profit and a lower bound for minimum allocable shares of
the profit. The mediation between upper and lower bound is operationalized by the
calculation of a convex combination of both bounds.

The difference between the y-value and the z-value is the limitation of the zvalue to
quasi-balanced games. This limitation to quasi-balanced games can also be seen as 3
substantial weakness of the z-value. The y-value picks up on this weakness of the 7
value. It can be shown that the y-value works without the integrity condition of quasi-
balanced games.'®

The central modification of the y-value compared to the z-value is made in the as-
sumption concerning the maximum allocable shares of the co-operation profit. With
the z-value, the maximum allocable share v,, .., of the profit G for an actor 4, is only
measured by the amount ¢(Cy) - ¢(Co\{4,}) by which the profit G of the grand coali-
tion Cy = {4,,...,Ay} would decrease if actor 4, left this grand coalition C,. By contrast
with the y-value, the maximum allocable share v,, .., of the profit G for one actor 4, is
measured by the amount ¢(C,,) - ¢(C,,\{4,}) the profit G of each coalition C,, including
actor 4, would decrease if actor 4, left this coalition C,. Given that actor 4, always
belongs to grand coalition Cp, the limitation of the calculation of v,, . at the z-value to
the grand coalition C, represents a special case of the calculation of v, at the 7-
value with C,, = Cy. Given that the y-value in addition to the grand coalition C, also
includes more coalitions C,, with C,, < Cj in the calculation of v, according to this
additional coalitions C,, the y-value represents a generalization G of the r-value.

16 ¢f. Tijs (1981).

cf. Driessen (1985); Driessen/Tijs (1982); Driessen/Tijs (1983); Driessen/Tijs (1985); Tijs (1987);
Tijs/Driessen (1983); Tijs/Driessen (1986); see also Curiel (1997) and Zelewski (2009).
Bergantifios/Masso (1996), pp. 280-281.
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4 A simple example for calculating the y-value
4.1 Purpose of the example

The following example is artificially generated to keep it simple and comprehensible.
The purpose of this example is to show how the y-value can be applied in management
practice to solve the problem of fair distribution of profits in supply chains.

This example should also illustrate what information is required in management prac-
tice in order to apply the y-value in calculating profit distributions. In this example the
necessary information is given. The gathering of the necessary information is ne-
glected. In management practice, obtaining all values of the characteristic function ¢
for all possible coalitions could prove particularly difficult. The problem of informa-
tion gathering in practice will be addressed later on in chapter 5.

4.2 Calculation

For illustrative purposes, a simply structured fictitious example is considered. It is re-
stricted to the number of N =5 actors. The numerical values are chosen so that the
necessary calculations remain relatively easy.

The numerical example considers a supply chain with 5 actors: 4i,...,4s. In the last
corporation year, the actors jointly realized a profit G of § 100,000. This profit is to be
distributed among the actors in a manner that these actors accept as fair. Firstly, to en-
sure the comparability with other game theory solution concepts, it is assumed that the
values of the characteristic function ¢ for the generic distribution game are known.
Thus the values ¢(C,,) are known for every possible coalition C,, which can be formed
from the set of actors 4 = {4,...,4s}. The values ¢(C,) are given in table 1 for all
2.1 =31 coalitions C,, where m = 0,1,2,....30.

Ca (G | EC L <(Cw)
Co={d41,42,43,41,45} 100,000

C={4,} 0 Cri={AzAs} 25,000 | Co={A1,AsAs) 55,000
Cr{Ay) 0 Cr={ApAs) 30,000 | Cor={da,As,ds} 50,000
Cs={4,} 0 Ci3={A43,44} 30,000 Cy3={A2,43,45} 55,000
Co={A4} 5,000 Ci4={A3,4s} 35,000 | Co={42.44,45} 65,000
Cs={4s} 10,000 Cis={A4,45} 45,000 | Cos={As,44,As} 70,000
Ce={41,45} 0 Ci={A1, 42,45} | 25,000 | Co={A1,42,43,44} 60,000
Cr={d,,45} 5,000 Crm{didsdsy | 35,000 | Cy={d, AyAs,As) | 65,000
Cy={d1, 44} 15,000 Cig={A41,42,45} | 40,000 | Cy={A4,42,44,45} 75,000
Co={A4,4s} 20,000 Cio={A\,43,44} | 40,000 | Cy={41,43,44,4s} 80,000
Ci={d2.45} 5,000 Cr={A41,43,4s} | 45,000 Cs={A2,43,44,45} 63,000

Tab. 1: Values of the characteristic function ¢ for all coalitions C,
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A prerequisite for calculation of the y-value as a solution y, where v, = (v ..., Vivy)
for the generic distribution game is that the values of the characteristic function ¢ for
all three types of coalition are available. That is, ¢(Cp) must be available for the grand
coalition Cy= {4,,...,4s}, while ¢(MC,) is required for each marginal coalition MC,
where n=1,...,5 and ¢(4C,,) must be known for each outsider coalition AC,,. The
value ¢(Cy) = 100,000 for the grand coalition C, is immediately available from table 1

since, according to the efficiency condition, the entire profit G = 100,000 must be dis.’
tributed exactly among all 5 actors 4,,...,45 in the supply chain. The values c(MC,) for
the marginal coalitions MC, where n=1,...,5 can be determined with the aid of the
definition MC, = Cy\{4,,} (results in table 2).

MC, | «(MC,)
MC, c({Ar,.dsy N {A1}) = c({d2,45,45,45}) = 90,000
MG, c({ArnAst N {Aa}) = c({A41,43,44,45}) = 80,000
MCs | c({d),0dsh N {ds}) = c({41,42,44,45}) = 75,000
MCy c({Ar,Ash \ {Aa}) = c({A4,,42,45,45}) = 65,000
MCs ({41, Ask \ {As}) = e({41,42,43,45}) = 60,000

Tab. 2: Values of the characteristic function ¢ for all marginal coalitions MC,

The values c(4C,,) for the outsider coalitions AC,,, where n=1,...,5, can be obtained
immediately from table 1. However, calculation of these values c(4C,,) requires a
trem@dous amount of work, since 75 (5¢15 = neq) feasible outsider coalif?ons must be
considered. This calculation is therefore omitted for space reasons. It is significant that
f'o'r the calculation of the values c(AC, ) for all possible combinations of outsider coa-
ht'IOI'lS AC,,, the values of the characteristic function ¢ for all possible coalitions C,
with & < C,,  C, need to be determined. Hence the above mentioned fifth requiren-7
ment of minimal knowledge is not fulfilled by the y-value. This is surprising, since it
appears from the formulas (1) to (6) that, to determine the x-value, only thos’e values
of the? characteristic function ¢ must be known that refer to the grand coalition C,, the
marginal coalitions MC, and the outsider coalitions AC,,. Only the concrete nur(;eric
calculation of the y-value for the example considered here shows that calculation of
the values ¢(4C, ) for the outsider coalitions AC, , indirectly leads to the fact that the
values ¢(C,) of the characteristic function ¢ for all possible coalitions C,, with
& < C,, = Cy must be known. !

The components v, of the upper bound UB (ideal point) are calculated with formula
(3) on the basis of the values ¢(Cy) and ¢(MC,) instead of the more complicated for-
%nula (4). This possibility of simplification relies on the fact that the example used here
18 a convex game (Curiel 1997, p. 3; Fromen 2004, p. 87; Zelewski 2009 p. 216). It
was proven for the class of convex games that the y-value coincides with ;he r—vah.ie
Because the z-value is calculated with the aid of formula (3), it is sufficient to use this.
formula here. .
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The value ¢(Cy) is immediately given by the profit G to be distributed:
¢(Co) = G =100,000. Thus the components v,%,,. of the upper bound UB of the y-value
are those shown in table 3.

A | Vi

A | e(Coy-c(MCy) = 100,000 - 90,000 = 10,000
Ay | (Co)-c{MC5) = 100,000 - 80,000 = 20,000
As c(Co)-c(MCs5) = 100,000 - 75,000 = 25,000
Ay | e(Co)-c(MCy) = 100,000 - 65,000 = 35,000
As c(Co)-c(MCs) = 100,000 - 60,000 = 40,000

Table 3: Components V¥ . of the upper bound UB of the y-value

The components v;,,, of the lower bound LB (threat point) of the y-value are calcu-
lated with formula (6) for each of the 5 actors 4; to As. This calculation is shown as an

example for actor Aq:
VE = max{c4‘l;c4_2;0} = max{S, 000;5, OOO;O} =5,000

Because:
C41 = C({A4} | AC4.1) = C({A4}) =5,000

g=2,..15 } =5,000

Cyy = max{c({A4} | 4C,, } = c(ACM ) _Zme(lNM\H}) v

From the components v, of the upper bound UB and the components v’ of the
lower bound LB calculated above, it follows that the standard case for calculation of
the y-value with 3°* vz =>" v7 . applies. According to formula (10), the weighting

factor vy is as follows:

G= Y Vi
PR JURT
B 100,000 (0 + 0+ 0+ 5,000+10,000)
(10,000 + 20,000 + 25,000+ 35,000+ 40,000) — (0+0+0+5,000 +10,000)

7/:

U om
23

4.3 Result of the calculation

The components v, , of the y-value v, are then calculated in table 4 for each actor 4,
using formula (10) and the weighting factor y = 17/,3 as the convex combination of the
components V, . of the upper bound UB (threat point) and the components v . of
the lower bound LB (threat point) for the y-value.
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for many instances of the generic distribution problem or have multiple, often even
infinite, solutions.
A" vll.l

A ] 7/53210,000 + %5320 = '/232170,000

Ay | 7/53920,000 + /3320 = '/23+340,000

Ay | 7/3025,000 + %3520 = '/32425,000

Ay | 7/25235,000 + %/1395,000 = '/2;4625,000
As | "7/23240,000 + °/53210,000 = !/532740,000

For the aforementioned reasons, the y-value offers to unite the advantage of good rea-
sonability of the acceptability of distribution outcomes as fair with the pragmatic as-
sumptions of the existence and clearness for a — in relation to other game theory solu-
tion concepts — broad range of instances of the generic distribution problem. The -
value proves superior to the already mentioned closely related z-value regarding its
implementation range. Due to its wider implementation range it must therefore be ac-
cepted that the y-value induces a higher calculation effort as at the z-value.

As managerial insights three aspects can be gained from above explanations. Firstly,
game theory solution concepts such as the y-value offer a “reasonable”, that is, prov-
able with good reason, and justifiable basis for the distribution of profits in supply
chains. Thanks to the explicability of the good reasons, there is a high chance that the
corporations will accept the distribution as fair. However, distribution of profits calcu-
lated using the y-value can always only represent the basis of a discussion about the
fair distribution of a collectively realized profit, not the final outcome of the distribu-
tion. Like any other concept for distributing profits, the y-value is based on specific
assumptions, which can, but need not, be accepted as ,,reasonable®. Propositions for
the distribution of co-operation profits on the basis of the y-value thus indeed form a
promising basis for discussion, because such a distribution proposition can be justified
with good reasons. However, good reasons never offer an assurance that — especially
on the basis of other assumptions — even more convincing reasons for an alternative
distribution proposition can be found.

Table 4: Components v, , of the y-value v,

In the end, exactly one y-value v, exists as a unique solution with y, = '/23°(170,000;
340,000; 425,000; 625,000; 740,000). This means that the $§ 100,000 profit that was
collectively earned by all five actors will be distributed as follows:

A, | share of collectively earned profit
A4, § 7,391.31

A4 $ 14,782.61
A3 $18,478.26
Ay $27,173.91

As $32,173.91

Table 5: shares per actor
Secondly, it was implied in this contribution that the profit G can be defined precisely
and quantified monetarily, but that this assumption will only rarely be fulfilled in prac-
tice. This can lead to two basic practical problems. On the one hand, agreement needs
to be reached as to the concrete economic scale on which the profit to be distributed is
to be determined and from which sources the information required to determine it can
be drawn. This is not a trivial task and cannot be analysed in detail in this article. On
the other hand, how the management of a supply chain is defined needs to be clarified,
because a value chain according to the agreements made at the beginning is character-
ized by the co-operation of legally autonomous corporations (autonomous actors). If a
supply chain is dominated by one focal corporation, it is relatively simple to equate the
management of a supply chain with the management of the focal corporation. How-
ever, as a side condition it must be considered that the management of the focal corpo-
ration can only make decisions that do not jeopardize the stability of the supply chain
— and from a game theory perspective the stability of the grand coalition. There is also
the question of how the management of a supply chain is defined, if the special case of
a focal corporation does not apply. In this non-focal case, one option is to revert to the
game theory concept of coalition formation games. With the aid of this concept, it is
possible to examine how coalitions of legally autonomous corporations in (the form
of) a supply chain come about. However, even such coalition formation games so far
offer no starting points at which to determine how, in supply chains without a focal

5 Conclusion

This article has shown how the vague understanding of fairness that dominates in prac-
tice can be defined with the aid of game theory by applying the game theory solution
concepts to the generic distribution problem. The solution concept the y-value was
introduced and explained. Special attention was paid to the fact that the y-value inevi-
tably results if a small number of assumptions with respect to individual and collective
rationality, efficiency and integrity are accepted. This matches the justification pro-
gram introduced at the beginning and presents a game theory solution concept in
which good reasons are cited in order for the resulting solutions to be accepted as fair
distribution.

In the authors’ view, the assumptions that the y-value is based on are so straightfor-
ward that the solution concept has great potential for general acceptance. Other game
theory solution concepts, for example the Shapley value and the nucleolus, demand the
acceptance of far more abstract, often only formally precisely definable assumptions.
Hence they have considerably lower general acceptance potential. Additionally, other
game theory solution concepts, for example the core of a game, can be traced back to a
few plausible assumptions. However, they have the disadvantage that they do not exist
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corporation, the profit to be distributed should be determined in concrete terms. Exten-
sive academic research is still required on this point.

Thirdly, the management of corporations co-operating in a supply chain must always
be aware of the fact that game theory solution concepts assume the rationality of a]
involved actors (corporations). Negotiations in real existing supply chains about the
“fair” distribution of profits are by no means always guided by the rationality of the
negotiating partners. Rather, management must be aware that the process of negotia-
tion on the fair distribution of profits also influences the fact that conceptions of ra-
tionality do not correspond to classic game theory. Influences “beyond” the concep-
tions of rationality of classic game theory are not covered by the game theory solution
concept introduced here.

The y-value thus represents an interesting approach and allows the aspect of bargain-
ing power to be included in determining distribution outcomes which can be accepted
as fair.
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Zusammenfassung

Die steigende Komplexitit der Transport- und Logistikprozesse fiihrt zu einer Vielzahl von Risiken
und Gefahren bei den Transportakteuren und Versicherungen. Die global verteilten Produktions- und
Absatzmdrkte sind eine Ursache, dass immer mehyr und hoherwertigere Giiter in weltumspannenden
Logistiknetzwerken transportiert werden. Aufgrund des steigenden Wettbewerbsdrucks unter den Lo-
gistikdienstleistern biindeln diese vermehrt Transporte zu grifleren Transporteinheiten und lagern
zeitunkritische Sendungen teilweise zwischen. Dies erhéht fiir die Versicherungen das Risiko von Kui-
mulschdden und kann bei grifieren Schéden beim Warenempfinger fiir Lieferengpdsse bzw. zu Be-
triebsunterbriichen fiihren. Gleichzeitig sind detaillierte Informationen iiber den Zustand von Waren
und ihrer Integritit innerhalb der Lieferkette nicht durchgehend vorhanden und die genauen Bedin-
gungen wdhrend des Transports bleiben intransparent. Sensor-Telematik-Systeme werden heute be-
reits von fiihrenden Logistikdienstleistern und Frachtfiihvern z.B. auf ausgesuchten Routen oder fiir
hochwertige Waren eingesetzt. Durch diese Entwicklungen werden ebenso Risiken sowohl fiir den
Transportversicherer als auch fiir die Transportakteure identifizier- und messbar, was die Grundlage
von effektiven prdventiven, schadensmindernden Mafinahmen bildet. Der Technologieeinsatz miindet
in ein situativ an die jeweiligen Transporicharakteristika angepasstes Risikomanagement. Welche
Einfliisse, Potentiale sowie Risiken aus dem Technologieeinsatz im Transportbereich erwachsen, soll
im Rahmen des vorliegenden Beitrags diskutiert werden. Vor diesem Hintergrund analysiert dieser
Beitrag das Schadenreduktionspotential eines Einsatzes von Sensor-Telematik-Systemen im Trans-
portbereich in drei Schritten: (1) Zur Identifikation der aktuellen Problemstellungen und Transportri-
siken im globalen Warenverkehr werden die Kernergebnisse einer Schadendatenanalyse bei einer der
Siihrenden europdischen Transporiversicherung vorgestellt. (2) Im Anschluss werden die Ergebnisse
der quantitativen Schadendatenanalyse anhand von 25 Experteninterviews weiter verdichtet und ver-
allgemeinert. (3) Den Abschiuss der Untersuchung bildet die Zusammenstellung der quantitativ-
qualitativ erhobenen Ergebnisse und Ableitung der Wirkungspotentiale von Sensor-Telematik-
Systemen zur Prévention von Transportschiden.
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Das erfolgreiche Management sowohl unternehmensinterner als auch unternehmens-
tbergreifender Wertschopfungsprozesse, Wertschopfungsketten und ganzer Wert-
schopfungsnetzwerke basiert im Besonderen auf dem zielgerichteten Einsatz von be-
stehenden und weiterentwickelten Methoden und Konzepten des Produktions- und Lo-
gistikmanagements sowie des Operations Research, dem Einsatz von innovativen In-
formations- und Kommunikationstechnologien sowie theoretischen und praktischen
Erkenntnissen des Kooperationsmanagements. Die Schriftenreihe dient der Versffent-
lichung neuer Forschungsergebnisse auf den Gebieten Logistik und Supply Chain Ma-
nagement. Aufgenommen werden Publikationen, die einen Beitrag zum wissenschaft-
lichen Fortschritt in Logistik und Supply Chain Management liefern.



